Overview of Titanium Alloy Powders

Share This Post

Table of Contents

Titanium alloy powders refer to titanium-based metallic materials in powder form used for additive manufacturing processes like selective laser sintering (SLS) and electron beam melting (EBM). Powder metallurgy allows creation of complex titanium components with superior mechanical properties compared to wrought products.

Titanium alloys are valued for their high strength-to-weight ratio, fatigue resistance, and corrosion resistance. When processed into fine powders, they can be used to 3D print intricate and lightweight parts for aerospace, medical, dental, automotive, and other applications.

This guide provides a comprehensive look at various types of titanium alloy powders, their characteristics, applications, specifications, suppliers, costs, installation, operation and maintenance of powder-based AM equipment, and more.

Types of Titanium Alloy Powders

Titanium alloys are generally categorized into alpha, alpha-beta, and beta alloys. Common titanium powders include:

Ti-6Al-4V6% aluminum, 4% vanadiumAlpha-beta alloy, most popular for aerospace components due to strength, weldability
Ti-6Al-7Nb6% aluminum, 7% niobiumAlpha-beta alloy, higher strength than Ti-6Al-4V
Ti-5Al-5Mo-5V-3Cr5% each of aluminum, molybdenum, vanadium and chromiumNear alpha alloy, excellent corrosion resistance and high-temperature strength
Ti-55535% aluminum, 5% molybdenum, 4% niobium, 3% vanadium, 1% zirconiumNear alpha alloy, used for compressor parts due to fatigue strength
Ti-10V-2Fe-3Al10% vanadium, 2% iron, 3% aluminumBeta alloy, highest strength of all titanium alloys but lower ductility

Characteristics of Titanium Alloy Powders

Key characteristics of titanium alloy powders:

Particle shapeMostly spherical, some irregular shapes, affects flowability and packing density
Particle size distributionNarrow distribution between 15-45 microns common, affects final part density and quality
FlowabilityDepends on shape, size distribution, surface structure – improve with spheroidization and flow agents
Apparent densityAround 2.5-3.5 g/cc based on composition, processing method – higher is better
Tap densityAround 60-80% of theoretical density based on packing – higher improves final part density
Oxide contentPresent as thin surface layer, higher levels can cause defects in final parts
RecyclabilityDepends on oxygen and nitrogen absorption – often up to 20 reuse cycles are possible

Applications of Titanium Alloy Powders

Titanium alloy powders are used to additively manufacture critical components across industries:

AerospaceStructural airframe components, jet engine parts, airframes, turbines
MedicalOrthopedic and dental implants, prosthetics, surgical instruments
AutomotiveEngine parts, powertrain components, under-the-hood parts
IndustrialTooling, moldmaking, robotics, manufacturing equipment
Oil and gasValves, pumps, wellhead components, pipes
ChemicalProcess equipment, reactors, heat exchangers

Benefits include weight savings, customization, simplified assemblies, faster prototyping, and improved lifecycle costs versus traditional manufacturing.

Titanium Alloy Powders
Overview of Titanium Alloy Powders 3

Specifications of Titanium Alloy Powders

Titanium alloy powders must meet exacting chemical, physical and microstructure specifications for use in AM processes:

ParameterTypical Specification
Purity>99% titanium, low O, C, N, H contamination
Particle shapePredominantly spherical
Particle size15 to 45 microns
Size distributionD10 > 10 microns, D90 < 100 microns
Apparent density>2.5 g/cc
Tap density>3.5 g/cc
Hausner ratio<1.25
Flow rate>25 s/50 g
Surface oxide<3000 ppm
Bulk oxygen<2000 ppm
Nitrogen<400 ppm
Hydrogen<150 ppm
Microstructurealpha, alpha-beta or beta phase

Meeting powder quality standards is critical for defect-free builds, good mechanical properties and surface finish.

Suppliers of Titanium Alloy Powders

Leading global suppliers of titanium alloy powders include:

SupplierPowder GradesQuality Standards
AP&CTi-6Al-4V, Ti-6Al-7Nb, Ti-5Al-5Mo-5V-3CrASTM B348, ASTM F2924, ASTM F3049
Carpenter AdditiveTi-6Al-4V ELI, Ti-6Al-4V, Ti 6-4, Ti CP2, Ti SP700ASTM F2924, ASTM F3001
LPW TechnologyTi-6Al-4V, Ti-6Al-4V ELI, Ti-6Al-7Nb, Ti 5553ASTM F2924, ISO 23301
PraxairTi-6Al-4V, Ti-6Al-4V ELI, Ti CP-2, Beta-CASTM F2924, ASTM F3001
TLS TechnikTi-6Al-4V, Ti-6Al-4V ELI, Ti-5Al-5Mo-5V-3CrASTM F2924, ASTM F3001

Specialized grades can also be sourced for specific applications.

Cost of Titanium Alloy Powders

Titanium alloy powder costs vary based on:

Alloy compositionTi-6Al-4V most common and economical
Quality gradeAerospace grades more expensive than industrial
Order volumePowder price reduces at higher quantities
Particle size rangeFine powders below 30 microns more costly
SupplierPricing differs between brands
Processing methodGas atomized powders costlier than plasma atomized

Typical price ranges:

  • Ti-6Al-4V: $150 to $450 per kg
  • Ti-6Al-4V ELI: $250 to $600 per kg
  • Ti-6Al-7Nb: $400 to $750 per kg
  • Ti 5553: $500 to $800 per kg

Scrap titanium recycling can reduce costs by 40-60%.

Powder Handling, Storage and Preparation

Proper handling, storage and preparation of titanium alloy powders is essential:

HandlingUse powder hoods, vacuum transfer systems to minimize exposure
StorageStore sealed containers in a moisture-free argon atmosphere
BlendingMix powders and recycling material in correct ratios
DryingRemove moisture at 200°C for 2-4 hours to prevent defects
SievingScreen powders through fine mesh to break up agglomerates
Flow conditioningAdd 0.1-0.5% flow agents like silica nanoparticles

Contamination and oxygen intake must be minimized to ensure high reused yield and end part quality.

Selective Laser Sintering Process

SLS process overview:

  • Powder is spread in thin layers and selectively fused by a high power laser
  • Support structures are built simultaneously with the part
  • Parts are embedded within the unfused powder bed until completion
  • Excess powder is removed to reveal the 3D part

SLS of titanium alloys requires:

  • Particle size between 15-45 microns with spherical morphology
  • Low oxygen and nitrogen content
  • Precise laser energy density optimization
  • Inert gas environment to prevent contamination
  • Stress relieving heat treatment of parts

SLS enables complex geometries but surface finish and tolerances are lower than EBM.

Electron Beam Melting Process

EBM process overview:

  • Titanium powder layers are preheated before fusing
  • Parts are built on a plate instead of platform for better heat dissipation
  • Electron beam selectively melts the powder in a vacuum
  • No support structures required and unused powder can be recycled

EBM of titanium alloys requires:

  • Fine powder sizes between 45-105 microns
  • High beam power ≥ 3kW and accelerating voltages 30-60 kV
  • Vacuum levels below 5 x 10-5 mbar
  • High temperature preheating up to 750°C

EBM allows higher build speeds, better material properties and surface finish compared to SLS.

Post-Processing of Titanium Parts

Titanium parts made by AM require post-processing:

Powder removalRemove loose powder from internal cavities
Thermal stress reliefReduce residual stresses using heat treatment
Hot isostatic pressingEliminate internal voids and increase density
MachiningImprove dimensional accuracy and surface finish
Surface treatmentsApply coatings or treatments to tailor properties

Support structures are easily removed since they are made of the same titanium material.

Operation and Maintenance of Metal AM Equipment

Reliable operation and maintenance of metal AM systems requires:

  • Training operators on machine capabilities, software, materials
  • Establishing SOPs for parameter optimization, quality control, workflows
  • Monitoring and documenting build processes using sensors, cameras
  • Regular replacement of filters, sieves, wipers, rollers
  • Checking laser optics, electron beam emitters and focusing
  • Calibrating powder layer and energy delivery systems
  • Tracking and replacing argon, helium, nitrogen supplies
  • Cleaning build chambers and material handling systems
  • Periodic upkeep as per OEM recommendations

Proactive maintenance improves uptime, maximizes equipment lifetime and ensures optimal quality of printed parts.

Choosing a Titanium Alloy Powder Supplier

Factors for choosing a titanium alloy powder supplier:

Powder gradesRange of alloys and compositions supported
Quality certificationsCompliance with ASTM, ISO and other standards
CustomizationAbility to produce specialized powders for applications
Batch analysis reportsComposition, characteristics and test results for each lot
Testing capabilitiesScope of quality tests conducted on incoming materials
Sampling servicesProvision of free samples for evaluation
Lead timesInventory levels and production rates to meet delivery targets
Minimum order quantitiesFlexibility with small trial orders
Technical expertiseMetallurgy and application knowledge to assist customers
Customer serviceResponsiveness to inquiries, issues and custom needs
PricingCompetitive and transparent pricing, discounts on higher volumes

Choosing reputable suppliers with strict quality control ensures a reliable source of high-performance titanium alloy powders tailored to AM processes.

Pros and Cons of Titanium Alloy Powders


  • High strength-to-weight ratio
  • Corrosion and fatigue resistance
  • Bio-compatibility for medical uses
  • Customized alloys can be manufactured
  • Complex, lightweight geometries produced by AM
  • Faster and cheaper than subtractive machining
  • Reduced lead times and inventories


  • Powders are expensive compared to other materials
  • Limited supplier and AM equipment availability
  • Difficult to achieve high density and surface finish
  • Secondary processing often required
  • Susceptible to contamination during handling
  • Post-processing can be costly and time consuming
  • Lack of codes and standards for quality control

With ongoing developments in AM technology, titanium alloy powders offer exciting potential across manufacturing sectors weighed against processing challenges that are continually improving.

titanium alloys poudre
Overview of Titanium Alloy Powders 4


Q: What are the main titanium alloys used in powder metallurgy?

A: Ti-6Al-4V is the most common titanium alloy powder due to its excellent strength, corrosion resistance and weldability. Other alloys include Ti-6Al-7Nb for higher strength and Ti 6-4 ELI for biomedical uses.

Q: How does titanium alloy powder quality affect properties of AM parts?

A: Powder characteristics like particle size distribution, shape, tap density, oxygen content directly affect density, surface finish, microstructure and mechanical performance of final parts.

Q: What precautions are required when handling titanium powders?

A: Exposure to air causes contamination so titanium powders must be handled in a moisture-free inert gas environment using gloves and respirators. Storage containers must be vacuum sealed.

Q: What is the typical pricing range for Ti-6Al-4V alloy powder?

A: For standard industrial grade Ti-6Al-4V powders suitable for AM, pricing is usually between $150 to $450 per kg depending on quantity and supplier. Aerospace grades are more expensive.

Q: What are the main advantages of SLS versus EBM for titanium alloys?

A: SLS can produce complex, lightweight geometries without supports. EBM allows higher build speed, better material properties and surface finish.

Q: Why is post-processing needed on AM titanium parts?

A: Steps like Hot Isostatic Pressing, heat treatment and machining help to relieve stresses, close internal voids, improve dimensional accuracy and enhance surface finish.

Q: How can powder recyclability and reuse yields be maximized?

A: By minimizing exposure to air during handling, drying powders before reuse, and blending with small ratios of fresh powder to prevent accumulation of impurities.

Q: What standards are used to specify the quality of titanium alloy powders?

A: Key standards are ASTM F2924, ASTM F3001 and ISO 23301 which provide compositional limits, acceptable test methods, and sampling procedures.

know more 3D printing processes

Subscribe To Our Newsletter

Get updates and learn from the best

More To Explore

Scroll to Top