The Guide to VIGA Machines

Compartilhe esta postagem

Índice

VIGA (Vacuum Inert Gas Atomization) machines have become pivotal in the production of high-quality metal powders. These machines are widely used in various industries, including aerospace, medical, and automotive, thanks to their ability to produce fine and uniform metal powders. In this detailed guide, we will explore every aspect of Máquinas VIGA, from their overview to specific metal powder models, their applications, and much more. Get ready for an in-depth look at the world of VIGA machines!

Overview of VIGA Machines

Vacuum Inert Gas Atomization (VIGA) is a method used to produce metal powders by atomizing molten metal in a controlled environment. The process involves melting metal in a vacuum and then atomizing it using an inert gas like argon or nitrogen. This results in high-purity metal powders with excellent properties, making them suitable for various advanced manufacturing processes.

Key Details of VIGA Machines

  • Processo: Melting and atomization in vacuum/inert gas environment
  • Output: High-purity, spherical metal powders
  • Formulários: Additive manufacturing, metallurgy, powder metallurgy, coating technologies
Máquinas VIGA
The Guide to VIGA Machines 9

Types of Metal Powders Produced by VIGA Machines

The versatility of VIGA machines allows them to produce a wide range of metal powders. Below is a list of specific metal powder models produced using VIGA technology, along with detailed descriptions.

1. Stainless Steel Powder (316L)

Descrição: Stainless steel 316L powder is known for its excellent corrosion resistance and mechanical properties. It is widely used in the medical and aerospace industries.

Características:

  • Composição: Iron, chromium, nickel, molybdenum
  • Propriedades: High corrosion resistance, good mechanical strength

2. Titanium Alloy Powder (Ti-6Al-4V)

Descrição: Ti-6Al-4V is the most commonly used titanium alloy powder, known for its high strength-to-weight ratio and excellent biocompatibility.

Características:

  • Composição: Titanium, aluminum, vanadium
  • Propriedades: High strength, lightweight, biocompatible

3. Inconel Powder (Inconel 718)

Descrição: Inconel 718 powder is a nickel-chromium alloy with excellent high-temperature strength and corrosion resistance, ideal for aerospace applications.

Características:

  • Composição: Nickel, chromium, iron, niobium
  • Propriedades: High-temperature stability, corrosion resistance

4. Aluminum Alloy Powder (AlSi10Mg)

Descrição: AlSi10Mg powder is an aluminum-silicon-magnesium alloy with good thermal conductivity and lightweight properties, making it suitable for automotive and aerospace applications.

Características:

  • Composição: Aluminum, silicon, magnesium
  • Propriedades: Lightweight, good thermal conductivity

5. Cobalt-Chrome Alloy Powder (CoCrMo)

Descrição: CoCrMo alloy powder is known for its excellent wear resistance and biocompatibility, widely used in medical implants.

Características:

  • Composição: Cobalt, chromium, molybdenum
  • Propriedades: Alta resistência ao desgaste, biocompatibilidade

6. Copper Alloy Powder (CuCrZr)

Descrição: CuCrZr powder is a copper-chromium-zirconium alloy with excellent electrical and thermal conductivity, suitable for electrical and thermal applications.

Características:

  • Composição: Copper, chromium, zirconium
  • Propriedades: High conductivity, good mechanical strength

7. Maraging Steel Powder (18Ni300)

Descrição: Maraging steel 18Ni300 powder is known for its high strength and toughness, commonly used in tooling and aerospace industries.

Características:

  • Composição: Iron, nickel, cobalt, molybdenum
  • Propriedades: Alta resistência e tenacidade

8. Tool Steel Powder (H13)

Descrição: H13 tool steel powder is renowned for its high hardness and heat resistance, making it suitable for tooling and mold making.

Características:

  • Composição: Iron, chromium, molybdenum, vanadium
  • Propriedades: High hardness, heat resistance

9. Nickel Alloy Powder (NiCr8020)

Descrição: NiCr8020 powder is a nickel-chromium alloy with excellent oxidation resistance and high-temperature stability, used in heating elements and industrial furnaces.

Características:

  • Composição: Nickel, chromium
  • Propriedades: Oxidation resistance, high-temperature stability

10. Tungsten Carbide Powder (WC-Co)

Descrição: Tungsten carbide powder is known for its extreme hardness and wear resistance, widely used in cutting tools and wear-resistant coatings.

Características:

  • Composição: Tungsten carbide, cobalt
  • Propriedades: Extreme hardness, wear resistance

Composition and Characteristics of VIGA Metal Powders

Below is a table summarizing the composition and characteristics of the metal powders produced by Máquinas VIGA.

Pó metálicoComposiçãoPropriedades
Aço inoxidável 316LIron, chromium, nickel, molybdenumHigh corrosion resistance, mechanical strength
Ti-6Al-4VTitanium, aluminum, vanadiumHigh strength, lightweight, biocompatible
Inconel 718Nickel, chromium, iron, niobiumHigh-temperature stability, corrosion resistance
AlSi10MgAlumínio, silício, magnésioLeve, com boa condutividade térmica
CoCrMoCobalt, chromium, molybdenumAlta resistência ao desgaste, biocompatibilidade
CuCrZrCopper, chromium, zirconiumHigh conductivity, good mechanical strength
18Ni300Iron, nickel, cobalt, molybdenumAlta resistência e tenacidade
H13Iron, chromium, molybdenum, vanadiumHigh hardness, heat resistance
NiCr8020Nickel, chromiumOxidation resistance, high-temperature stability
WC-CoTungsten carbide, cobaltExtrema dureza, resistência ao desgaste

Applications of VIGA Metal Powders

The metal powders produced by VIGA machines have a wide range of applications across various industries. The following table highlights some of these applications.

SetorFormuláriosMetal Powders Used
AeroespacialEngine components, structural partsTi-6Al-4V, Inconel 718, AlSi10Mg
MédicoImplants, prostheticsStainless Steel 316L, CoCrMo, Ti-6Al-4V
AutomotivoLightweight parts, thermal managementAlSi10Mg, CuCrZr
FerramentasMolds, cutting toolsH13, WC-Co, 18Ni300
ElétricaConductive components, thermal managementCuCrZr, NiCr8020
IndustrialHeating elements, wear-resistant coatingsNiCr8020, WC-Co

Especificações, tamanhos, classes e padrões

The following table provides specifications, sizes, grades, and standards for some commonly produced metal powders by VIGA machines.

Pó metálicoFaixa de tamanho (µm)GrauPadrões
Aço inoxidável 316L10-45AISI 316LASTM F138, ISO 5832-1
Ti-6Al-4V15-45Grau 5ASTM F136, ISO 5832-3
Inconel 71815-53AMS 5662ASTM B637
AlSi10Mg20-63AlSi10MgEN AC-43400, ISO 3522
CoCrMo10-45ASTM F75ASTM F75, ISO 5832-4
CuCrZr20-63CuCrZrASTM B505, DIN 17670
18Ni30010-53Maraging Steel 300AMS 6521
H1315-45H13ASTM A681
NiCr802020-63NiCr8020ASTM B163, DIN 17742
WC-Co10-45WC-CoISO 3327

Detalhes de fornecedores e preços

Here is a table listing some of the suppliers and approximate pricing details for various metal powders produced by VIGA machines.

Pó metálicoFornecedorPreço (per kg)Notas
Aço inoxidável 316LTecnologia Carpenter$50 – $70Bulk discounts available
Ti-6Al-4VAP&C$200 – $250Premium quality, aerospace grade
Inconel 718Tecnologias de superfície da Praxair$150 – $200Aplicações de alta temperatura
AlSi10Mg ECKART $30 – $50Common in additive manufacturing
CoCrMo Arcam AB$300 – $350Medical implant grade
CuCrZr Aditivo GKN$40 – $60Alta condutividade
18Ni300 Höganäs AB$80 – $100High strength, tooling applications
H13 Tecnologia Carpenter$70 – $90Heat resistant tooling
NiCr8020 Oerlikon Metco$100 – $130Industrial furnaces
WC-CoKennametal $250 – $300Extreme hardness, cutting tools

Comparing Pros and Cons of VIGA Metal Powders

The following table compares the pros and cons of various metal powders produced by VIGA machines.

Pó metálicoVantagensLimitações
Aço inoxidável 316LExcellent corrosion resistance, mechanical strengthHigher cost compared to regular steel
Ti-6Al-4VAlta relação resistência/peso, biocompatibilidadeCaro, difícil de usinar
Inconel 718High-temperature strength, corrosion resistanceCaro, usinabilidade limitada
AlSi10MgLeve, com boas propriedades térmicasMenor resistência em comparação com outras ligas
CoCrMoResistência ao desgaste, biocompatibilidadeExpensive, limited availability
CuCrZrExcelente condutividade elétrica e térmicaMenor resistência mecânica
18Ni300Alta resistência e tenacidadeExpensive, requires special handling
H13High hardness, heat resistanceProne to cracking
NiCr8020Oxidation resistance, high-temperature stabilityExpensive, limited availability
WC-CoExtrema dureza, resistência ao desgasteVery expensive, brittleness
Máquinas VIGA
The Guide to VIGA Machines 16

Perguntas frequentes

What is the VIGA process?

The VIGA process involves melting metal in a vacuum and atomizing it using inert gas to produce fine metal powders.

Which industries use VIGA metal powders?

Industries like aerospace, medical, automotive, tooling, and electrical use VIGA metal powders.

What are the advantages of using VIGA metal powders?

VIGA metal powders offer high purity, uniform particle size, and excellent properties suitable for advanced manufacturing processes.

How do VIGA machines compare to other atomization methods?

VIGA machines provide better control over powder quality and purity compared to other methods like water atomization or gas atomization.

Are VIGA metal powders expensive?

The cost of VIGA metal powders can be higher due to the advanced technology and high-quality output, but the benefits often outweigh the costs.

What are some common metal powders produced by VIGA machines?

Common powders include stainless steel 316L, Ti-6Al-4V, Inconel 718, AlSi10Mg, CoCrMo, CuCrZr, 18Ni300, H13, NiCr8020, and WC-Co.

Conclusão

Máquinas VIGA represent a pinnacle in the field of metal powder production, providing high-quality materials for a wide range of industries. Their ability to produce powders with precise control over composition and particle size makes them indispensable in modern manufacturing. Whether it’s aerospace components, medical implants, or industrial tools, the versatility and reliability of VIGA-produced powders ensure they remain a critical resource in advanced material applications.

conhecer mais processos de impressão 3D

Assine a nossa newsletter

Receba atualizações e aprenda com os melhores

Mais para explorar

Role para cima