概要
High thermal conductivity alloys are crucial in various industries, thanks to their ability to efficiently transfer heat. These alloys are engineered to handle extreme temperatures and facilitate heat dissipation in applications ranging from electronics to aerospace. But what makes these alloys so special? Let’s dive into the specifics of high thermal conductivity alloys, their compositions, properties, and uses.
Composition of High Thermal Conductivity Alloys
The magic of high thermal conductivity alloys lies in their composition. Various metal powders are blended to achieve the desired thermal performance. Here’s a breakdown of some specific metal powder models and their unique properties:
金属粉モデル | 構成 | 熱伝導率 (W/m-K) | 主要物件 |
---|---|---|---|
銅(Cu) | 純銅 | 398 | Excellent conductivity, malleability |
アルミニウム(Al) | Pure Aluminum | 235 | 軽量、耐腐食性 |
銀(Ag) | Pure Silver | 429 | Highest conductivity, antimicrobial properties |
Gold (Au) | Pure Gold | 318 | Excellent resistance to corrosion and oxidation |
Graphite (C) | カーボン | 150-500 | High thermal and electrical conductivity, lubricity |
Silicon Carbide (SiC) | SiC | 120-270 | High hardness, chemical stability |
Beryllium Oxide (BeO) | BeO | 250 | High thermal conductivity, electrical insulation |
Diamond (C) | カーボン | 2000 | Highest known thermal conductivity, exceptional hardness |
Aluminum Nitride (AlN) | AlN | 140-180 | High thermal conductivity, electrical insulation |
Magnesium Oxide (MgO) | MgO | 60 | Good thermal conductivity, electrical insulation |

の特徴 High Thermal Conductivity Alloys
Understanding the characteristics of these alloys helps in selecting the right material for specific applications. Let’s explore these features in more detail:
- 熱伝導率: The primary attribute, ensuring efficient heat transfer.
- 耐食性: Vital for durability in harsh environments.
- 電気伝導率: Important for applications involving electronic components.
- 機械的強度: Ensures the material can withstand physical stresses.
- 可鍛性と延性: Essential for forming and shaping the material into desired forms.
Detailed Characteristics Table
合金 | 熱伝導率 | 電気伝導率 | 耐食性 | 機械的強度 | 可鍛性 |
---|---|---|---|---|---|
銅(Cu) | 高い | 素晴らしい | 中程度 | 高い | 素晴らしい |
アルミニウム(Al) | 高い | グッド | 素晴らしい | 中程度 | グッド |
銀(Ag) | Highest | 素晴らしい | グッド | 中程度 | グッド |
Gold (Au) | 高い | 素晴らしい | 素晴らしい | 高い | グッド |
Graphite (C) | 可変 | グッド | グッド | 中程度 | 中程度 |
Silicon Carbide (SiC) | 中程度 | 貧しい | 素晴らしい | 高い | 貧しい |
Beryllium Oxide (BeO) | 高い | 貧しい | グッド | 高い | 貧しい |
Diamond (C) | Highest | 素晴らしい | 素晴らしい | Highest | 貧しい |
Aluminum Nitride (AlN) | 高い | 貧しい | グッド | 中程度 | 貧しい |
Magnesium Oxide (MgO) | 中程度 | 貧しい | グッド | 中程度 | 貧しい |
Applications of High Thermal Conductivity Alloys
These alloys are indispensable in various sectors due to their unique properties. Here’s how different industries leverage these materials:
産業 | 申し込み | Alloy Used | Reason |
---|---|---|---|
エレクトロニクス | Heat sinks, PCB substrates | Copper, Aluminum, Aluminum Nitride | High thermal conductivity, good electrical properties |
航空宇宙 | Thermal shields, engine components | Titanium alloys, Silicon Carbide | 高い強度対重量比、耐熱性 |
自動車 | Engine parts, brake components | Aluminum, Copper, Graphite | Lightweight, efficient heat dissipation |
医療機器 | Imaging equipment, implants | Gold, Silver, Beryllium Oxide | Biocompatibility, high conductivity |
エネルギー | Solar panels, power electronics | Copper, Graphite, Silicon Carbide | High conductivity, durability |
Telecommunications | Microwave devices, antennas | Copper, Aluminum, Diamond | Efficient heat dissipation, electrical properties |
コンシューマー・エレクトロニクス | Smartphones, laptops | Copper, Aluminum, Graphite | Heat management, lightweight |






仕様、サイズ、等級、規格
選択時 high thermal conductivity alloys, it’s crucial to consider specifications, sizes, grades, and standards to ensure compatibility with specific applications.
Specifications Table
合金 | グレード | Size (mm) | スタンダード |
---|---|---|---|
銅(Cu) | C11000 | 1-100 | ASTM B152 |
アルミニウム(Al) | 6061 | 0.5-150 | ASTM B209 |
銀(Ag) | 999 | 0.1-50 | ASTM B413 |
Gold (Au) | 24K | 0.01-25 | ASTM B562 |
Graphite (C) | HOPG | 0.01-10 | ISO 11439 |
Silicon Carbide (SiC) | A | 0.1-20 | ASTM F1892 |
Beryllium Oxide (BeO) | HP | 0.01-5 | MIL-M-38510 |
Diamond (C) | インダストリアル | 0.001-1 | ISO 9001 |
Aluminum Nitride (AlN) | 高純度 | 0.1-10 | ASTM D333 |
Magnesium Oxide (MgO) | Technical | 0.5-50 | ASTM C572 |
サプライヤーと価格詳細
Finding reliable suppliers and understanding pricing is essential for procurement.
Suppliers Table
サプライヤー | Alloys Available | 価格帯(kgあたり) | 所在地 |
---|---|---|---|
Materion | Beryllium Oxide, Aluminum Nitride | $500-$1000 | アメリカ |
3M | Silicon Carbide, Aluminum | $50-$200 | アメリカ |
日立金属 | Copper, Graphite | $10-$100 | 日本 |
Sumitomo Electric | Diamond, Gold | $1000-$5000 | 日本 |
Toyo Tanso | Graphite, Copper | $20-$150 | 日本 |
Showa Denko | Aluminum, Magnesium Oxide | $15-$120 | 日本 |
H.C.スタルク | Silver, Gold | $500-$4000 | ドイツ |
ケナメタル | Silicon Carbide, Copper | $30-$250 | アメリカ |
ルサール | Aluminum, Copper | $10-$90 | ロシア |
Alcoa | Aluminum, Magnesium Oxide | $15-$110 | アメリカ |
Pros and Cons: Comparing High Thermal Conductivity Alloys
Selecting the right alloy involves weighing the advantages and limitations. Here’s a comparative analysis:
Advantages and Limitations Table
合金 | メリット | 制限事項 |
---|---|---|
銅(Cu) | Excellent thermal and electrical conductivity, high ductility | Prone to oxidation, heavier than aluminum |
アルミニウム(Al) | Lightweight, good conductivity, corrosion-resistant | Lower thermal conductivity than copper |
銀(Ag) | Highest thermal conductivity, good antimicrobial properties | Expensive, prone to tarnish |
Gold (Au) | Excellent corrosion resistance, good conductivity | Very expensive, soft metal |
Graphite (C) | High thermal conductivity, good lubricity | Brittle, can oxidize at high temperatures |
Silicon Carbide (SiC) | High hardness, good thermal stability | Brittle, lower thermal conductivity than metals |
Beryllium Oxide (BeO) | High thermal conductivity, good electrical insulation | Toxic if inhaled as dust, brittle |
Diamond (C) | Highest thermal conductivity, extreme hardness | Extremely expensive, difficult to work with |
Aluminum Nitride (AlN) | Good thermal conductivity, electrical insulation | Brittle, less conductive than diamond |
Magnesium Oxide (MgO) | Good thermal conductivity, cost-effective | Lower conductivity compared to top conductors |

よくある質問
Frequently Asked Questions
質問 | 回答 |
---|---|
What is the highest thermal conductivity metal? | Silver, with a thermal conductivity of 429 W/m·K. |
Why is thermal conductivity important in alloys? | It determines the material’s ability to transfer heat efficiently, crucial for thermal management in various applications. |
Which alloy is best for heat sinks? | Copper and aluminum are popular choices due to their high thermal conductivity and good machinability. |
Are high thermal conductivity alloys expensive? | It varies; alloys like gold and diamond are very expensive, while aluminum and copper are more affordable. |
How is thermal conductivity measured? | Using units of watts per meter-kelvin (W/m·K), indicating the amount of heat transferred per unit distance per unit temperature difference. |
Can alloys have both high thermal and electrical conductivity? | Yes, copper and silver are examples of alloys with both high thermal and electrical conductivity. |
What are common applications of high thermal conductivity alloys? | Electronics cooling, aerospace components, automotive parts, and medical devices. |
How do impurities affect thermal conductivity? | Impurities can scatter phonons and electrons, reducing thermal conductivity. High-purity materials typically have better thermal performance. |
Is diamond really the best thermal conductor? | Yes, diamond has the highest known thermal conductivity, making it an exceptional material for high-performance heat dissipation applications. |
What makes aluminum alloys popular despite not being the best conductor? | Aluminum alloys are lightweight, corrosion-resistant, and cost-effective, making them suitable for many practical applications despite their lower conductivity compared to copper or silver. |
In conclusion, high thermal conductivity alloys play a vital role in modern technology by enabling efficient heat management across various applications. Understanding their compositions, properties, and applications allows for informed material selection, ensuring optimal performance and longevity in demanding environments. Whether it’s the unparalleled conductivity of silver or the robust versatility of aluminum, these alloys are indispensable in driving innovation and functionality in today’s advanced industries.