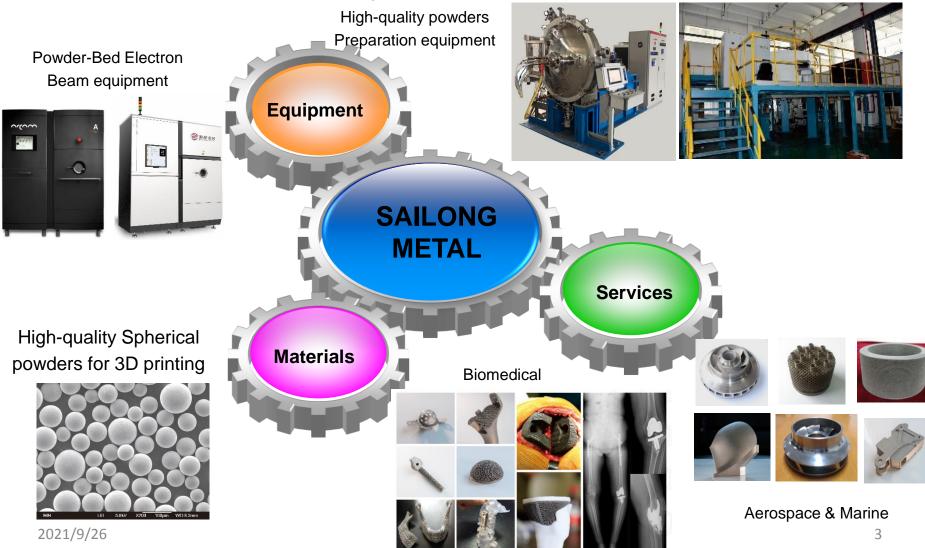
Plasma Rotating Electrode Process Technologies and System (PREP)

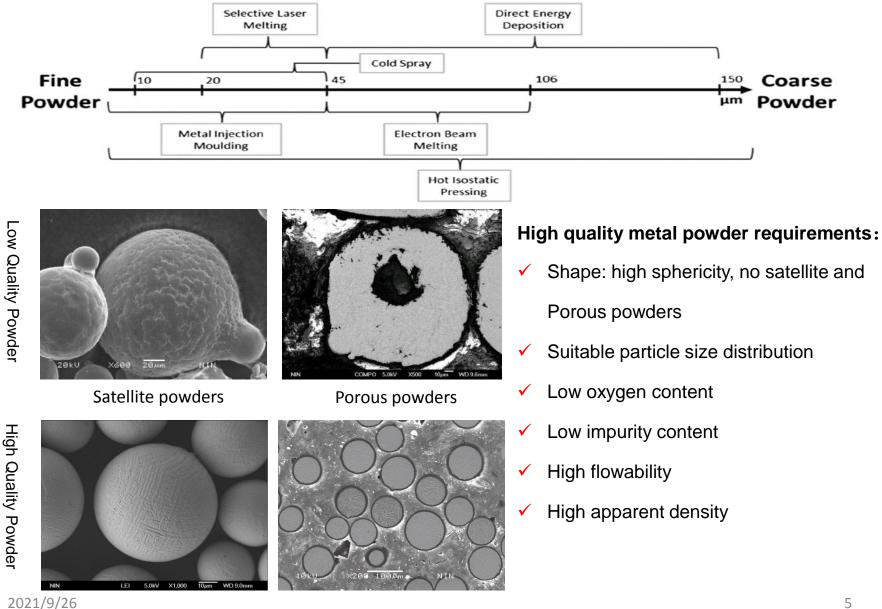
Contents

Comparison of Typical Metal Powder Preparation

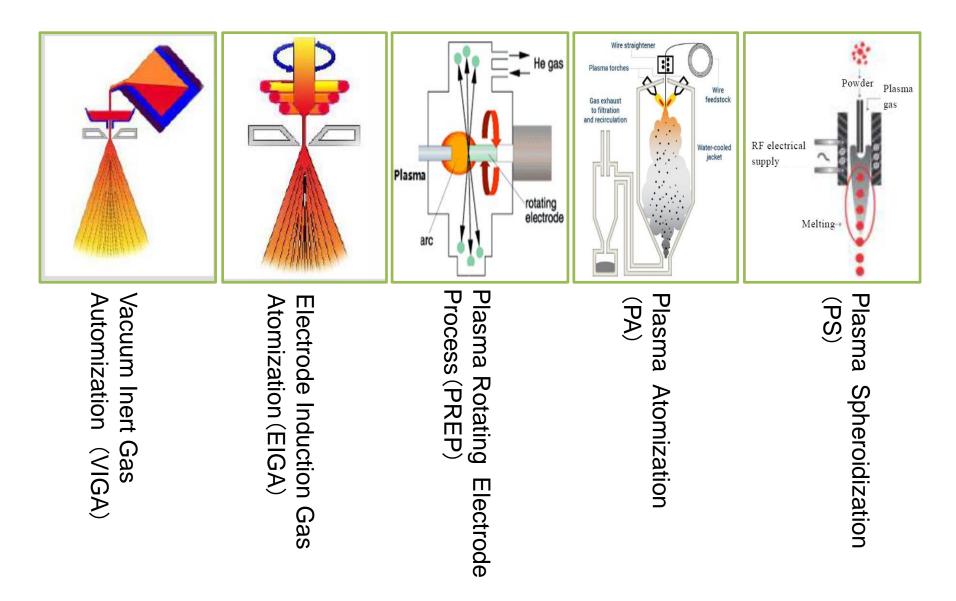

Technologies

- Plasma Rotating Electrode Process (PREP)
- Experimental Data: Metal Powders Practice

One-step Solution Provider in Metal 3D Printing

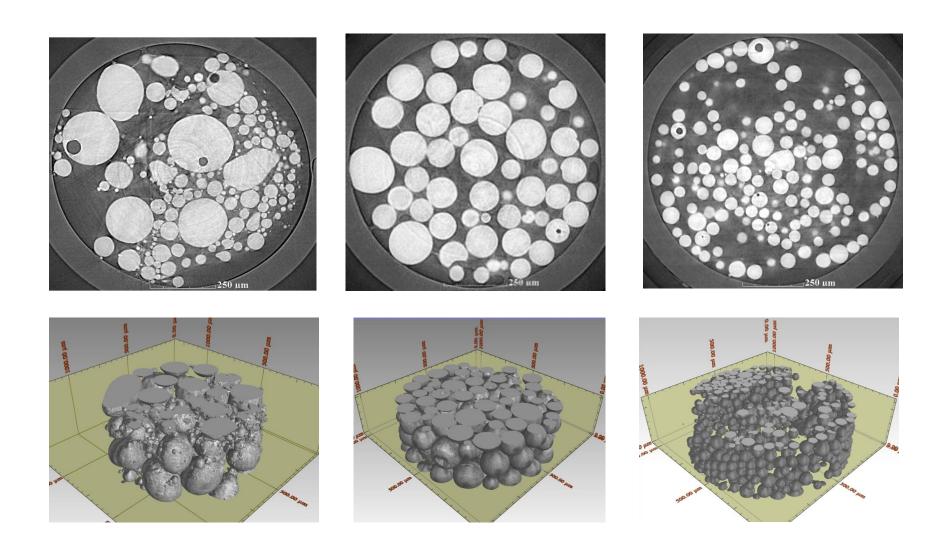

What we can serve: Powders + Equipment + Services

A Whole Industry Chain Development Model

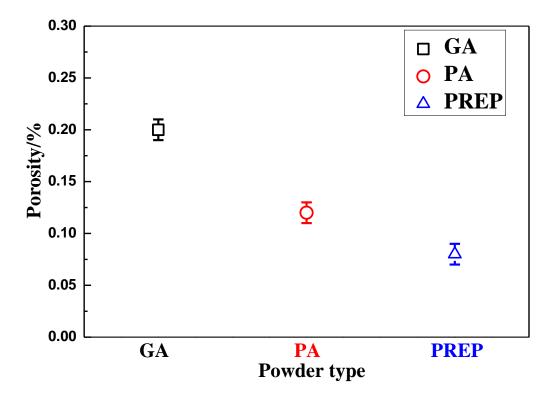


Comparison of Typical Metal Powder Preparation Technologies

Requirements for High-quality Metal Powders


Typical Metal Powder Preparation Technologies

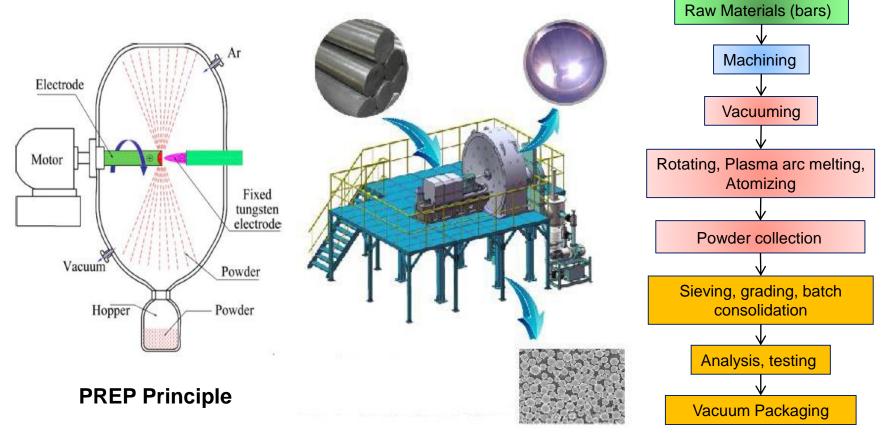
Typical Metal Powder Preparation Technologies


Powder Making Process	VIGA	EIGA	PREP	PA	PS
Raw Material	Elemental materials, ingots, bars, etc.	Precision machined bars	Precision machined bars	Wire material	Irregular powders
Powder Particle Size Distribution	Wide particle size distribution, certain percentage of fine powders (-325 mesh)	Wide particle size distribution, certain percentage of fine powders	Narrow particle size distribution and low percentage of fine powders	Wide particle size distribution, higher percentage of fine powders than VIGA and EIGA	Highly related to the raw powders, certain percentage of fine powders
Productivity	about 100kg/8h	about 100kg/8h	150~200kg/8h	<100kg/8h	<100kg/8h
Powder Morphology	Nearly spherical, Sphericity>80%	Nearly spherical, Sphericity>80%	Spherical, sphericiy> 90%	Spherical, sphericity> 85%	Spherical, sphercity> 85%
Powder Characteristics	Certain percentage of satellite and porous powders with a slightly higher oxygen content	Certain percentage of satellite and porous powders with a slightly higher oxygen content	Fewer satellite and porous powders, lowest oxygen content	Small amounts of satellite and porous powders, slightly higher oxygen content	Very small amounts of satellite and porous powders with high oxygen content
Limitations	Contamination by impurities	Large gas consumption	Low percentage of fine powders	Raw materials for filaments	Raw powders
SEM Pictures				264U X200 100xm AHR	

Pictures of Shape and Porocity

PREP

Statistics of Internal Porosity


Porosity	GA	0.20±0.01 vol.%	
	PA	0.12±0.01 vol.%	
	PREP	0.08±0.01 vol.%	

Plasma Rotating Electrode Process (PREP)

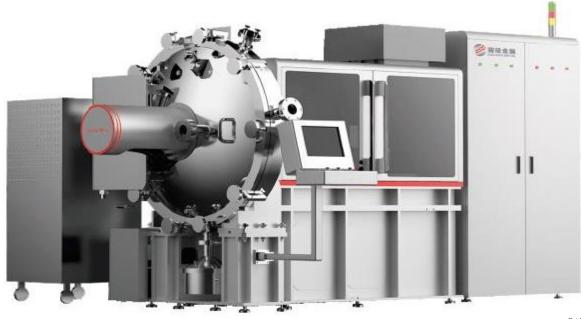
Principle and Process of PREP Technologies

In 1985, the Northwest Institute of Non-Ferrous Metals independently designed and developed the first PREP equipment in China.

The high-speed rotating electrode (raw material) is melted by the plasma arc under the protection of the high purity inert atmosphere, and the molten metal is thrown out by big centrifugal force to be atomised by the inert atmosphere and condensed into spherical powders when contacting to the internal wall of the cold chamber.

Characteristics of PREPed Metal Powders

PREPed Spherical Metal Powers


Characteristics of PREPed Metal Powders:

- ✓ Low increment of oxygen and other impurities (high purity)
- ✓ Perfectly spherical and essentially satellite-free
- ✓ Narrow particle size distribution, high flowability and high apparent/packing density
- ✓ Low internal porosity

Compact PREP Equipment: SLPA-D

Sailong's compact PREP equipment (SLPA-D) is purposely designed for R&D of novel alloy powders and small batch production of high quality powders with the following characteristics:

- ✓ High powder sphericity (over 90%), low porosity and satellite powders
- High purity (low oxygen content) due to atomizing in the inert atmosphere
- ✓ High rate of fine powders output due to significant increase in working speed
- Suitable for diversified powder demands
- Ergonomics friendly, easy to operate
- Simple and professional interface design
- Environment friendly
- Low cost

Technical Parameters and Constructure: SLPA-D

Main Technical Pa	arameters	Main Technical Parameters			
		Plasma gun system			
Rotating speed of electrode rod	up to 50,000rpm (Adjustable)	High speed rotary shaft system and dynamic sealing mechanism			
Diameter of Eletrode		Feeding system			
rod	Ф30mm	Powder collection system			
Powder Morphology		Atomizing chamber			
	Spherical Rate ≥95%	Vacuum system			
Particle Size Distribution	D ₅₀ ≤43µm (High temperature alloy)	Cooling system			
		Gas supply system			
Capacity	≥10kg (8h, depending metal type)	Power supply and E-control system			
Oxygen Increment	≤100ppm (Ti alloy ≤100ppm; High-temperature alloy ≤50ppm)				
Atmosphere	Ar or He (high purity)				
Maximum power	120kW				
Floor Space	4m×3m×2.5m				
Powder Materials	Ti&Alloys、Ni&Alloys、Co&Alloys Stainless steels, high entropy alloys, Al&Alloys, Cu& Alloys and refractory alloys				

Good Human-computer Interaction Experience

Hardware Configuration:

Core Control Components

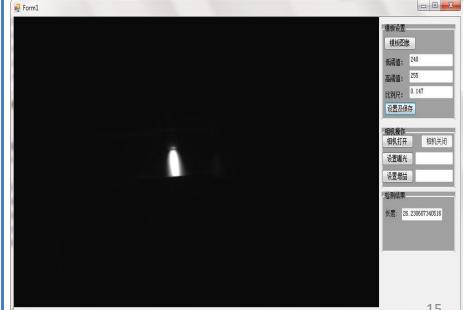
The latest series of PLCs and IPCs from Siemens for industry-leading computing control and communication technology.

Key Drive Components

The feed system uses the latest Siemens drives and service motors for precise control.

High-speed rotating system, using Delta's top series frequency converters for ultra-high speed controlled operation.

森化宝压力 点动数值 主控画面 数据记录 10.10 剩余位置 进给速度 真空系统 411.11 411.11 41.11 41.11 41.11 41.11 -10.05 10.05 振音画面 ***mm 0.0mm/s -10.00 启动画面 退出系统 钮 控 制 按 15.ET 目 源 35%地区 系 统参数 电 电 È 轴参数 进 给 alier-系 统 或示电流 ni int 后間 6/9**8** an te また曲 33万相 ***¥ **** $^{\circ}$ \odot \bigcirc 0 10267 Ó 0 0**1** 134.0 Ô +Orpm 0.0mm/ 0 **01** MENNE. σ 0 Ο 10.20.00 0 4 \triangleright +Orpm 0 01


Complete UI design:

Fully closed-loop design:

full closed-loop control of all operating buttons, key fully closed control of components.

Integrated design: the whole machineis divided into the main control system, the vacuum system, alarm system, data acquisition system, a total of 4 major systems, realizing the online operation of each component.

Intelligent design: by using machine vision and other cutting-edge technology, the main arc diameter and length can be real-time online measurement, recording and intelligent adjustment.

Ergonomic Design

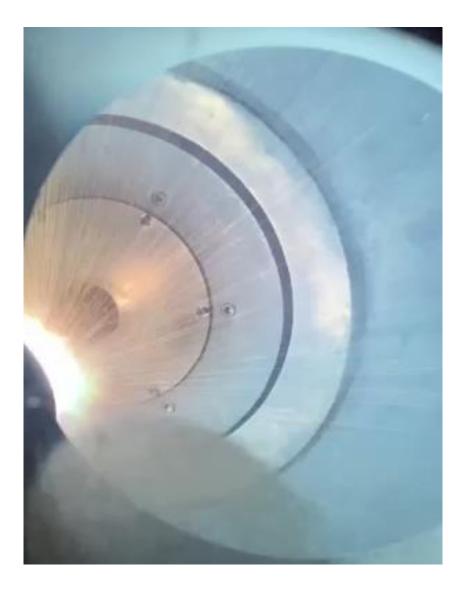
Three-level Security

Level 1 Enables the protection of key components, including molecular pumps, mechanical pumps, electric spindles, feed motors, PLCs, etc..

Level 2 Enables automatic fault detection of key componentsection and det alarming of key components, including motors, cylinders, etc.

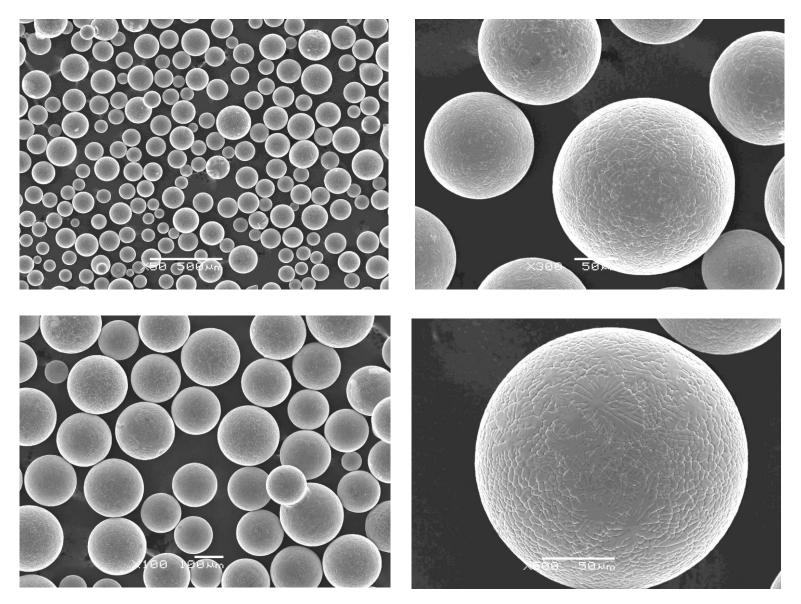
Level 3 Enables misuse, indiscriminate operation and other undesirable alarm indication of bad equipment use behaviour.

Online Recording of Process Data

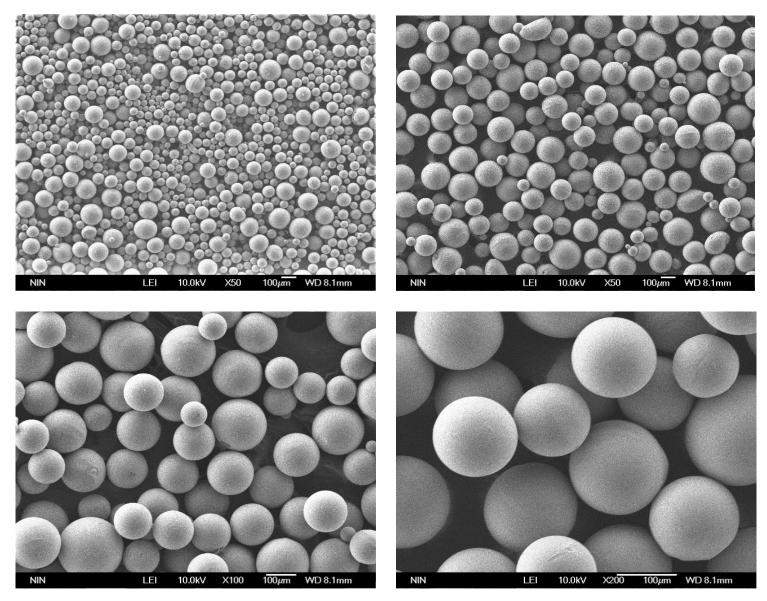

- Enabling real-time online display of core data.
- Enabling real-time recording of core data.
- Enabling real-time preservation of core data.
- Core data includes: spindle speed, torque,
 Main arc current, etc.

\bigcirc	\circ	$ $ \bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
氯气未到位	空压未到位	水压未到位	离子枪水温过	油雾润滑液位低	电主轴电流过大	真空系统未开
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
挡板阀未关	安全门未关	氯气未开	电磁阀未开	枪急气未开	油雾润滑故障	挡板阀未开
\bigcirc	0	0	0	\bigcirc	\bigcirc	\bigcirc
粗抽阀未开	粗抽阀未关	雾化室氩气未开	预抽阀未开	预抽阀未关	水冷机未启动	水冷机故障

Spindle speed/rpm	Spindle torque	Spindle current	Ar pressure
12001	1.3	19.62	0.05
11997	1.3	19.58	0.06
11994	1.23	18.01	0.07
11997	1.16	17.91	0.09
11994	0.91	19.97	0.11
12275	1.41	20.94	0.12
12501	1.08	19.38	0.13
12495	1.14	19.4	0.14
12504	0.71	19.57	0.14
12496	1.2	20.31	0.14
12888	1.83	20.52	0.14
13009	1.19	17.81	0.14
12997	0.98	17.03	0.14
12993	1.16	19.54	0.14
13003	0.96	18.65	0.14

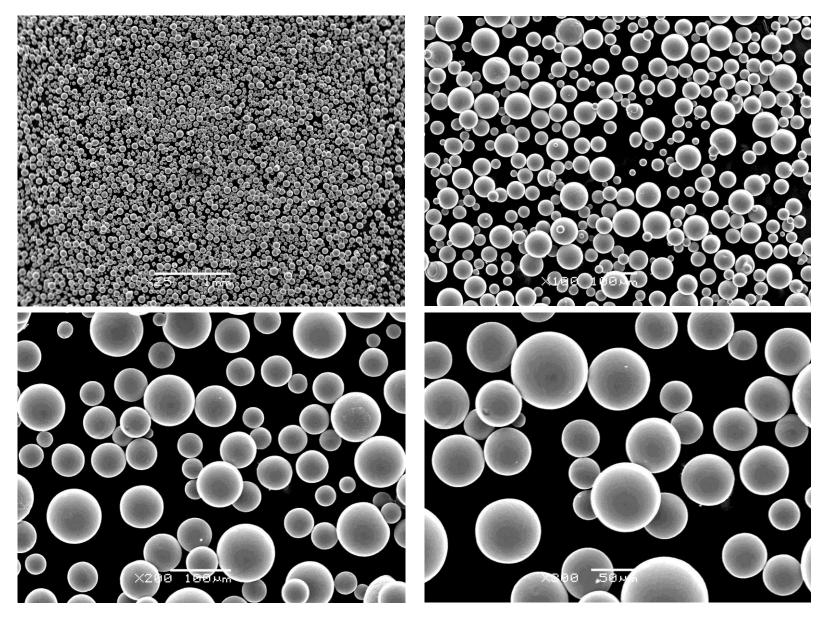

Notice: This data is for reference only.

Video of Melting and Atomizing (PREP)

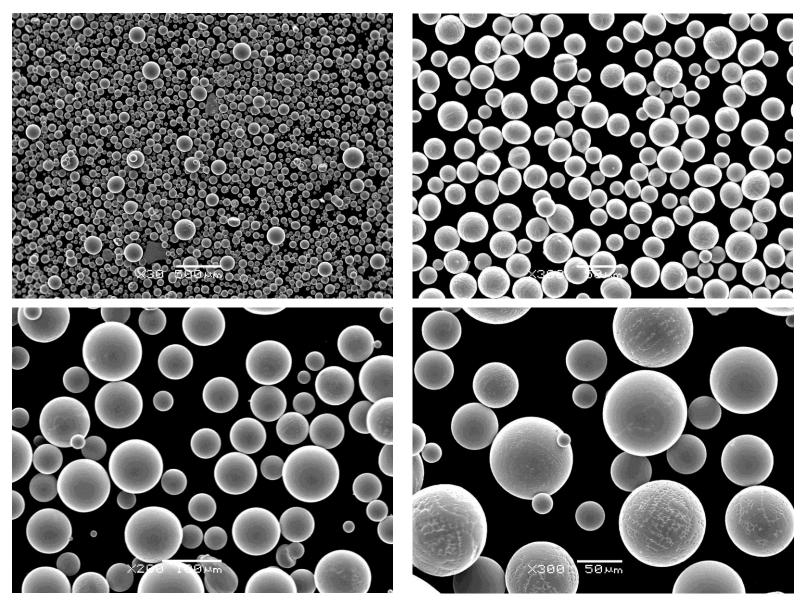

Experimental Data: Metal Powders Practice

SEM: Al-alloy powders

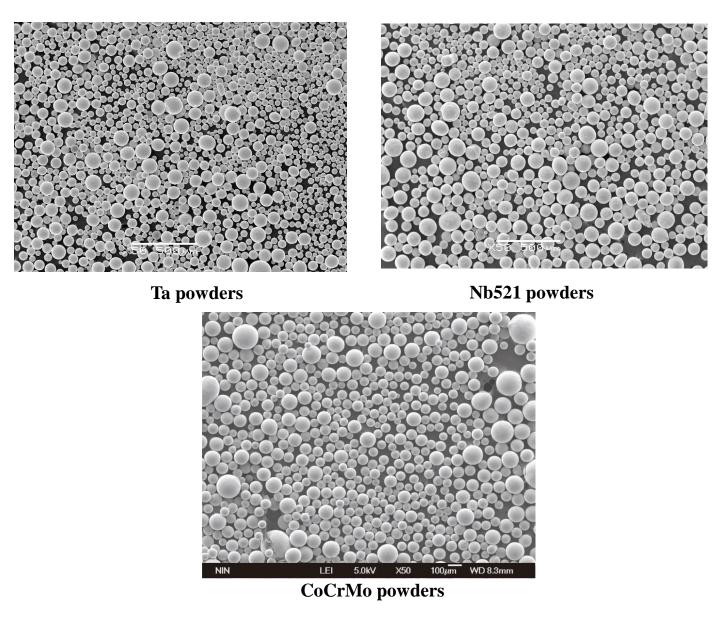
AISi10Mg powders produced by SLPA-D


SEM: Ti-alloy powders

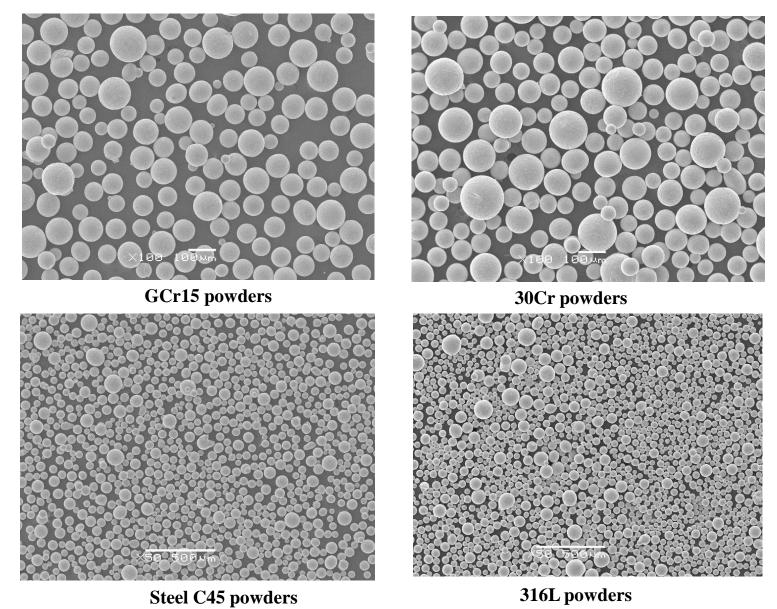
2021/9/26


Ti6AI4V (TC4) powders produced by SLPA-D

SEM: High purity Ti powders


High purity Ti powders produced by SLPA-D

SEM: High-temperature alloy powders


SEM: IN718 powders produced by SLPA-D

SEM: Refractory Metal and Alloy powders

SEM: Refractory Metal and Alloy powders produced by SLPA-D

SEM: Steel Alloy powders

Steel C45 pc

SEM: Steel Alloy powders produced by SLPA-D

TC4 Powders produced by SLPA-D

IN718 Powders produced by SLPA-D

Mesh	Micron	Percentage (%)	Mesh	Micron	Percentage (%)
+100	>150	7.39	+100	>150	0.09
-100~+140	106~150	11.81	-100~+140	106~150	1.57
-140~+200	75~106	18.89	-140~+200	75~106	8.80
-200~+270	53~75	45.98	-200~+270	53~75	10.52
-270~+325	45~53	9.10	-270~+325	45~53	15.58
-325	<45	7.83	-325	<45	63.44
Oxygen content (wt%)		0.06-0.18	Oxygen content (wt%)		≤ 0.007
Flowability (s/50g)		20-35	Flowability	r (s/50g)	12-20

Thank you for your attention!

Contact: Luke Zhang Email: zhangls112@163.com